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hen aggregating the probability estimates of many individuals to form a consensus probability estimate of

an uncertain future event, it is common to combine them using a simple weighted average. Such aggregated
probabilities correspond more closely to the real world if they are transformed by pushing them closer to 0 or 1.
We explain the need for such transformations in terms of two distorting factors: The first factor is the compression
of the probability scale at the two ends, so that random error tends to push the average probability toward 0.5.
This effect does not occur for the median forecast, or, arguably, for the mean of the log odds of individual
forecasts. The second factor—which affects mean, median, and mean of log odds—is the result of forecasters
taking into account their individual ignorance of the total body of information available. Individual confidence in
the direction of a probability judgment (high/low) thus fails to take into account the wisdom of crowds that
results from combining different evidence available to different judges. We show that the same transformation
function can approximately eliminate both distorting effects with different parameters for the mean and the
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median. And we show how, in principle, use of the median can help distinguish the two effects.
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1. Introduction
The standard practice when combining probability
estimates from many experts to form a single overall
estimate is to take a (perhaps weighted) average of the
individual estimates. Several investigators have found
that averaged estimates are typically conservative and
can be improved by transforming the average so that
probabilities become more extreme, closer to 0 or 1
(e.g., Ariely et al. 2000, Turner et al. 2013). We have
used the transformation

g &

W=
This transformation, equivalent to that used by Erev
et al. (1994), Shlomi and Wallsten (2010), and many
others (apparently beginning with Karmarkar 1978), is
shown in Figure 1, with =25

! Others (reviewed by Turner et al. 2013) have used a less restrictive
transformation in which the level varies as well as the amount of
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In a study of probabilistic forecasting of international
events (Mellers et al. 2014), we found empirically that
an extremizing transformation in this form, with values
of a greater than 1, could improve the quality of aggre-
gated probability judgments, as determined by Brier
scores. We were surprised that the optimal values of a
were greater than 1. In subsequent research, we have
found cases in which they are less than 1, presumably
because the judgments are initially much too extreme.
We first thought that the need for transformation was
the result of compression of the probability scale at the

extremization; i.e., t(p) = 6p°/(6p" + (1 —p)*). We used the restricted
form because, in our data, forecasters provided probabilities for
both “yes” and “no” when the target event could be described
as happening or not; in other cases, such as which party would
win an election, the happen/not-happen distinction was absent.
The theoretical points we make would apply to the more general
form as well.
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Figure 1 Transformation of Probability Judgment with 2 =2.5

1.0

o o o
IS o ©
| | |

Transformed judgment

o
¥
|

0.0

I I I I I I
0.0 0.2 0.4 0.6 0.8 1.0

Judgment

extremes. We supposed that a judgment had a true
value for a group of forecasters; a value that is then
expressed with error that is equally likely to be positive
or negative, but not otherwise symmetric around the
true value. Given this assumption, a very high true
value, such as 0.99, cannot go much higher if the error
is positive, but it can go much lower, so the mean of
several observed scores is likely to be less than 0.99,
even though 0.99 is the expected median. Juslin et al.
(2000) refer to this as an end-of-scale effect. Because of
this, transforming the observed mean by pushing it
closer to 1 (extremizing, when the average was above
0.5) would then come closer to recovering the true
value (as suggested by Erev et al. 1994).

We were, however, puzzled when we found that
an extremizing transformation also improved Brier
scores when we aggregated by using the median
forecast rather than the mean. The argument of the last
paragraph implies that the mean of a set of judgments
is less extreme than the true value, but the median
should be an unbiased estimate of the true value.
So why not use the median instead of the mean?
With enough forecasts, this is a good idea, but with a
few forecasts the median could be more affected by
sampling error of the population of forecasters. And,
indeed, the median is usually more extreme than the
mean, but apparently not as extreme as it should be.

This paper describes our proposed solution to
this puzzlement. Specifically, we propose that judges
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actually attenuate their own expressions of confidence,
to take into account their belief that they are missing
useful information that might be available. In other
words, stated probabilities are expressions of individual
confidence rather than confidence in the best forecast
that can be derived from all available information.
If you predict an event with 0.6 probability, you are
saying that you think it will happen but you are not
very confident. You might be more confident if you had
more information. Each forecaster may feel this way to
some extent, yet the average of their forecasts takes
advantage of the fact that the forecasters differ in the
information they have (Wallsten and Diederich 2001). If
every forecaster said 0.6, and they were using different
information, then someone who knew all of this would
have a right to much higher confidence. Thus, their
average confidence is less than the confidence that
anyone should have in the forecast that can be inferred
from the group average. The latter is based on some-
thing closer to the total set of information available to
all the forecasters. The attenuation resulting from the
feeling of missing information would affect the median
judgment as well as the mean.

Hypothetically, we can imagine that each forecaster
could state a probability based on the evidence she
has. Sometimes this will only be one or two items, and
these will point strongly in one direction. The forecaster
might think, “If my evidence were the totality of
evidence available, then I would give this a very high
probability. But, if I had all the evidence, I might even
come out with a probability less than 0.5. So I will
reduce the extremity of my judgment.” Note that this
reduction might increase the calibration of the judge
who does it, or improve the Brier score. We are not
arguing that any sort of cognitive bias is involved.
If anything, all the known biases go in the opposite
direction, the direction of overconfidence, and these
biases might reduce or reverse the effect we postulate.

The amount of reduction in judgment extremity
(which we call Regression) depends on the amount of
information that the forecaster feels is missing. This is
of course a difficult judgment to make. Moreover, the
average of many individual forecasts is usually based
on more information than each of the forecasts making
it up. Some forecasters might have access to information
that says, “Yes, this will happen.” Others might have
access to conflicting or negative information. Yet, if the
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forecasters sample all the information in an unbiased
way, the average of their probability judgments should
come close to reflecting the best judgment that could
be made by a forecaster who had all the information,
at least in terms of which side of 0.5 the judgment
is on.

We show here that the transform we use can approx-
imately correct for both factors that lead to average
probabilities that are not extreme enough: error varia-
tion and regression. To do this, we develop a simple
model, which we take to be approximately true in
the same way in which traditional statistics takes its
assumptions about normally distributed error, etc., to
be approximately true. It is simple and convenient,
and for practical purposes it is probably good enough.
We also show how, in principle, the median can be
used to distinguish the two different factors that make
extremization work.

2. A Sketch of the Model

For a given question at a given time, assume that there
is a true correct answer known only to an omniscient
arbiter. The arbiter sends a signal 5;, S,, ..., with an S;
for each possible answer i. We call this set S. Of course
S; for the true answer will usually be higher than
for other possible answers. (Here, for simplicity, we
assume that there is only one other possible answer,
hence a binary question.) Each signal is bounded by 0
and 1. And the signal is the best possible probability
estimate, in the following sense: given the total set of
information available to all forecasters, no method of
producing probability forecasts on the basis of this
information could beat the method used to derive S in
terms of maximizing the expected utility of decisions
based on the probability. In Appendix A, we argue
that we can approximate this criterion by asking how
to optimize a strictly proper scoring rule, specifically,
the Brier score. We assume that the forecaster does not
know anything about what decisions will be made, or
their payoffs, so we assume that each decision has a
threshold probability for some action and that these
thresholds are uniformly distributed between 0 and 1.
This assumption leads to the conclusion that a method
of judgment that optimizes the Brier score will also
optimize the expected utility of these decisions.
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2.1. Irreducible Uncertainty

Note that S; need not be 0 or 1 for each i. The best
information we have may leave us with considerable
uncertainty, and we cannot reduce this uncertainty
by gathering more information, because none exists.
We call this irreducible uncertainty (IU). Reducible uncer-
tainty exists when information is available to the judge
that could improve the accuracy of the probability
judgment. For example, if I do not know that Fermat’s
last theorem is true, I could look in Wikipedia and find
out. IU exists for repeated events that are determined
in part by conditions that we cannot know, such as the
path, starting, point, and rotation speed of the flips of
several coins. But IU also exists for unique events, such
as whether the Republicans will control the U.S. Senate
in the next election.?

2.2. The Error Distribution

We have a number of forecasters, indexed by j, who
perceive each signal S with error and give probability
judgments P; based on their perception. We assume
that error arises from two sources: different forecasters
using different information and random noise in the
translation of an internal feeling of certainty into a
number both within and among forecasters.

Note that the error in the sampling of information
may itself have several sources, and this does not affect
our argument. Error may arise from judges having
different information, some pointing to a positive
outcome (i.e., whatever is coded as 1, usually the
occurrence of some event) and some against it. Such
information could include knowledge of base rates for
categories that include the question at issue, analogies
with other cases, or specific information about the case
at hand. Base rates for different categories that include
the target could be higher or lower than the signal
for a given outcome §;. Likewise, each inference from
an analogy or from individuating information could,
on their own, lead to probabilities above or below S,
which is based on all sources of information available
to anyone.

In sum, we think our assumption that sampling error
is equally likely on both sides of S is plausible. It could

21U does not map neatly into the distinction between aleatory and
epistemic uncertainty, which is, in any case, largely a psychological
distinction (Fox and Ulkiimen 2011).
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be incorrect in either direction, for specific cases or in
general, but we see no reason to think so.

Error in the translation of beliefs into numbers could
also have several sources, such as individual differences
in the way people use information, or in precision
of the numbers they provide, or from judgment-to-
judgment variation within a person in the translation of
a degree of belief into a number. We do not distinguish
any of these sources of error here. We assume that all
error is symmetric around the signal: half of it leads to
judgments higher than the signal, half lower.

If we had a very large number of forecasters, per-
ceivers of the signal, each of whom had some random
sample of the available information, and if we knew the
distribution of the error, we could recover S completely.
With a smaller number of forecasters, we will have
some additional error that results from sampling of
the population of possible forecasters. We ignore this
source in the following development, which is thus an
approximation.

If the error distribution were symmetric, then our
best estimate of S would be an average of the P;’s. On a
probability scale, it is surely not symmetric in general.
For example, if the signal is 0.9, some errors will be pos-
itive and others negative. The positive errors cannot be
larger than 0.1, but the negative errors could be as large
as 0.9. Ideally, we would want to transform individ-
ual probability judgments P; so that their distribution
becomes symmetric, average the transformed values,
and then reverse the transformation. This approach is
explored in a companion paper (Satopaa et al. 2014),
which uses the log odds transformation to make the
error distribution more symmetric (as do Turner et al.
2013). In our application, this approach, using log odds,
seems to do slightly better despite the problem of
dealing with P; values near 1 and 0, but this result
may depend on the precision of forecasters when they
give extreme judgments.

Here we shall stick with the idea of aggregating the
probabilities first, and then transforming the aggregate.
An advantage of this approach is that we do not need
to deal with the problem of continuity in judgments
near 0 and 1. We shall assume, however, that a log
odds transformation creates the needed symmetry of
the error distribution around S, and work through
the implications of this assumption for the present
approach, even though we do not otherwise use the
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log odds transformation in this paper. In making this
assumption, we are assuming implicitly that nobody
actually makes forecasts of 0 or 1, and we are avoiding
the problem of interpreting such 0-1 forecasts as stated.

In sum, we assume that the error distribution around
S is symmetric only with an appropriate transformation,
such as log odds, but without the transformation we
can still assume that p(P, > S;) =p(P; < §;); i.e., positive
and negative errors are equally likely.

Another approach would be to apply a transforma-
tion to each P]», such that the transformed value is still in
the 0-1 range, and then average the transformed values
without any “back transformation.” Such an approach
might work better than the aggregate-then-transform
approach taken here (i.e., average the probability judg-
ments and then transform the average). For example,
we could apply a transform such as Equation (1) before
aggregating and then aggregate by taking the simple
mean. Turner et al. (2013) use this approach with a
more general transformation that contains a parameter
6 for making all probabilities generally higher or lower,
as well as a parameter for making them more or less
extreme. Turner et al. found that this model does fairly
well in terms of Brier scores, but not as well as the
others they test (average then transform; transform
with log odds, average, and back transform). We have
also found in unpublished data that this method, using
Equation (1) without the 6 parameter, does worse
than the ones we discuss here (and others). Part of
the problem with this method may be that it could
extremize judgments on the “wrong side” of 0.5, as
well as those on the correct side. When judgments are
highly variable yet their mean is still high and close
to the correct side, extremizing would be insufficient
because of these wrong-side probabilities. It isn’t clear
why we would want to extremize less, holding the
untransformed mean constant, when judgments are
more variable.

3. Regression of Log Odds

Toward Zero
We assume that forecasters regress (or “shrink”) their
own estimates toward a probability of 0.5 (assuming
two options) or toward log odds of 0. The amount of
regression corresponds to the amount of information
that forecasters individually think they are missing.
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We should find less regression in the more expert
groups. And we can measure the two variables that
affect the transform—error around the signal and
regression to zero—separately by looking at the optimal
transforms for the mean and median for a given group.
The median transform is affected only by regression.
The difference between mean and median optimal
transforms tells us about the random error component
(including all sources of error).

We model the situation by supposing that forecasters
develop their forecasts by updating a prior distribu-
tion as new information arrives, which we represent
with a simple Bayesian model. Suppose we have a
normal prior distribution of forecasts in log-odds space,
with mean 0 and a large variance.> We have a nor-
mal likelihood function, so that the probability of an
observation x given a true value T, p(x | T), is nor-
mally distributed with mean T and with a smaller
variance. Then the mean of the posterior distribution
p(T | x) is cx, where ¢ <1. The value of ¢ depends
on the relative variances of the prior and likelihood
distributions. The normal distribution is “conjugate,” so
that the resulting distribution is normal. Its mean is a
proportion ¢ of its original mean, where the proportion
depends only on the relative variances of the likelihood
function and the prior. Thus, our simple assumptions
lead to the conclusion that individual ignorance leads
to a regression of log odds toward 0 by a constant
proportion. This is the same as saying that the log
odds is multiplied by c.

What effect does this have on the need for trans-
formation? Assuming the transformation function in
Equation (1), then (letting t stand for ¢(p)) the expres-
sion for the odds of ¢t is

t_ p/p'+a=-pY _ 7
1=t 1-p/(p°+@1-p)) @Q-p)»’

so the log odds is

log % = alogp —alog(1—p)
= aflogp —log(1—p)]. @)
In other words, the constant 2 in Equation (1) amounts

to multiplication of the log odds by a. Thus, if the log

3 The argument does not depend on it being log odds, just that it is
unbounded.
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odds have already been multiplied by ¢, then to undo
the effect of this regression and recover what the log
odds would have been without it we must let a=1/c.

If this regression were the only reason for distortion,
then under the other assumptions stated the optimal
value of a should tell us how much regression was
done. Specifically, if we start with the median forecast
and find that we can improve the estimate optimally
with a transformation using a, then 1/a is an estimate
of ¢, the amount of regression. If all forecasters know
that they have all the available information, then they
should not regress at all and a should be 1.

Note that this model assumes that forecasters are
regressing optimally. In this case, a transformation of
the median that undoes the effect of their regression
should recover the signal S;, provided that the group
of forecasters is large and that the errors resulting
from incomplete information are unbiased (i.e., equally
likely to favor one option or the other, relative to full
information). We have no way to know whether regres-
sion is optimal, too much, or too little. Importantly, it
could be just right. But it does not need to be optimal
for the transformation to recover S;. For example, if
forecasters did not regress at all but were responding to
information that was on the whole biased against the
actual outcome, the bias would have an effect similar
to that of regression.

4. Another Way to Think
About Regression

In general, we may think of probability judgments as
consisting of two parts, a judgment of what will happen
and a judgment of confidence. Thus, a probability of
0.40 for some event means, “I think it will not happen,
with 60% confidence.” Looking at it this way, the
median forecast of a group of forecasters with access to
different information should be correct (on the correct
side of 0.5) more often than the median probability
would warrant. This is because the median probability
represents the confidence of a single typical forecaster,
but the group does better than that by effectively
pooling information.

Thus, the regression we propose is not a bias with
respect to the question forecasters are asked. We suggest
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that forecasters are taking into account the information
that they have, which they assume to be less than
what is available. Forecasters who do this can be
well calibrated individually. But the combined forecast
of the group can be more accurate, more likely to
be in the correct direction, than that of the average
individual. This is why we need to extremize the
average of the individuals. Individuals will appear to be
under-confident if we suppose that they are providing
confidence judgments for the group, assuming that they
do not suffer much from individual over-confidence
(which would reduce or reverse the apparent under-
confidence) and that the average will benefit from the
fact that different forecasters have different information.
We do not usually ask for judgments of confidence in
the group, so this apparent under-confidence is not
an error. Thus, rather than talking about individual
regression or shrinkage, we can talk about group
progression or expansion, starting with the individual
forecasts as the baseline. The expansion factor would
be a function of the difference between the group’s
data and the individual’s data, and it can be expressed
as a ratio. The reciprocal of this ratio is the regression
constant we have already described.

The difference between group and individual data
would depend on whether the individuals are indepen-
dent, e.g., whether they share data with each other,
how thoroughly each individual samples the available
data, and the number of individuals. If we assume
independence and random sampling of available data,
we could calculate the effect of the number of individ-
uals. (Again, we do not pursue this here.) In the limit,
the group would have all available information.

We could also think of irreducible uncertainty within
this framework by supposing that some information is
not “available”; there is nothing anyone can do to get
it. Thus, even all the available information does not
allow perfect prediction of which outcome will occur.
The signal S; would be some distance from 0 or 1.

5. A Simulation

The function in Equation (1) can reverse the effect of
regression due to uncertainty about missing informa-
tion. Can the same function also reverse the effect
of scale distortion resulting from the asymmetry of
the error distribution for probabilities? The answer
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seems to be yes, at least to a very close approximation.
We demonstrate this with a simulation. The point
of the simulation was to generate what mean and
median probability judgments would look like under
the assumptions we have outlined: judgments result
from a signal plus noise that is normally distributed in
log odds space, and from a regression toward 0 (in log
odds), then transformed to probability.

The simulation gives us sufficient confidence that
Equation (1) can serve both purposes: correcting for
the regression (which follows from the assumptions of
the last section) and approximately correcting for the
distortion of the error distribution.

The simulation (presented in detail in the R script in
Appendix C) proceeds as follows:

1. Generate a set of 100 “signals” S, which are the
best probabilities as defined earlier, ranging from 0.500
to 0.995. (Probabilities below 0.5 would just be the
mirror image of these, so would not change any results.)

2. Transform these to log odds. Now the numbers
range from 0 to 5.29 (log odds of 0.995).

3. Replicate this 100-item vector 100 times, yielding
a 100-by-100 matrix. Each column is the original vector
of signals. Each row is one of the numbers in that
column. The entire first row is 0; the last row is all 5.29.

4. Add noise to each row. The noise is the same
for each row. The basic noise is a vector of 100 nor-
mal quantiles of 0.005, 0.015, 0.025, ...,0.995. This
vector thus ranges from —2.58 to 2.58 and is normally
distributed. For each run of the model, we multiply
this basic noise vector by a constant before adding it.
The constant ranges from 0 to 9. It corresponds to the
standard deviation of the noise that we add. The entries
in the matrix now represent judgments in log-odds
space before any regression, including the normally
distributed error that we have assumed. Each row
corresponds to a different signal. Each row has a mean
of 0, and a standard deviation that we have specified
for this run (0-9).

5. Multiply the entire matrix by c, the constant that
indicates the amount of regression. If c is 1, there is
no regression. For different runs of the model, ¢ took
values of 0, 0.2, 0.4, 0.6, and 0.8.

6. Transform these aggregates back to probabilities.

7. Aggregate the judgments in each row by averag-
ing. These averages represent the average log odds
for each of the signals between 0.5 and 0.995. We also
aggregate by taking the median.
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8. Find the squared deviation of each aggregate
(mean and median) of each row from its corresponding
signal probability.

9. Find the optimal transformation constant a that
mimimizes the sum of these deviations. Specifically, we
apply Equation (1) (which is called ptrans in the script)
to the mean and median and optimize its constant a so
as to optimally recover the signals. We minimize the
sum of the squared deviations from the signals.

In sum, we manipulated the noise and regression
constant and determined the best fitting constant a
in each case, and this tells us how the optimal value
of a, the amount of transformation, depends on the
two factors of interest, the standard deviation of the
noise and the regression constant (c).

To examine the performance of the model for differ-
ent amounts of regression and noise, we generated 50
cases: 10 different values of noise crossed with five
different values of the regression constant c. The noise
values ranged from 0 to 9. Specifically, as noted, we
started with a normal distribution with mean 0 and
standard deviation (s.d.) of 1, then multiplied this by
the values 0-9. (Remember that this is now in terms of
log odds, not probability.) The values of ¢ were (as
noted) 0, 0.2, 0.4, 0.6, and 0.8. The value of 0, of course,
corresponds to no regression. We used the median as
well, which should (and does) eliminate any effect of
the noise. Notice that, for 0 noise, or the median, the
optimal transformation is exactly the reciprocal of c.

Figure 2 shows the value of a for the optimal trans-
formation as a function of the two factors, for the mean
and median. Note that the optimal transform for the
median is unaffected by noise, so the values for the
median correspond to the intercepts where the noise
is 0. For the median, the optimal transformation is
determined by the regression, and it follows a=1/c
perfectly. This is also the result for the means with zero
noise. This reciprocal relation is approximately true for
the other values of the noise, but the transformation
has less of an effect on a as the noise increases.

The fit of the model to the simulated data is very
good. All deviations from perfect fit (mostly those in
the upper right of Figure 2) are less than 0.005 on the
probability scale. Various attempts to improve the fit
of the model by using more quantiles (up to 10,000)
failed to improve it, so we suspect that the fit is not
exact. For practical purposes, the fit seems to be good
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Figure 2 Optimal Transformation Constant a as a Function of Noise and
Regression, for the Aggregated Mean
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enough, since the assumption of normally distributed
error is itself only an approximation.

6. A Demonstration from Data

We conducted a study in which we recruited more than
2,000 people to estimate the probabilities of the out-
comes of dozens of international events such as political
elections. (The study and its results are described in
detail by Mellers et al. 2014.) In the first year, 1,973
forecasters responded to 102 questions; 87 questions
were resolved;* and the mean number of questions
attempted by each forecaster was 47; the mean number
of days each question was available was 56. An exam-
ple of a question was, “Will Italy’s Silvio Berlusconi
resign, lose re-election/confidence vote, or otherwise
vacate office before January 1, 2012?” They provided a
probability judgment for the outcome of this question.
All forecasters were given some instruction in the idea
of calibration, and some forecasters were given more
extensive training. Forecasters knew that we would
be aggregating their judgments to produce an overall

4 We omitted one question because it was clearly a near miss, leaving
86 questions.
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prediction for each event, and that we were competing
with other teams who were doing the same.

To get an idea how well the model works in esti-
mating the two parameters for real data, we estimated
the optimal transformation constant a for four cases,
mean, and median for self-reported expert and nonex-
pert forecasters.® Specifically, we found the value of a
that would minimize the mean Brier score across the
80 questions that had two options.” (Generalization to
more than two options should be straightforward but
was not attempted.) Expertise was defined in terms of
a self-rating item asked for each of the 80 questions,
in which forecasters rated themselves on a five-point
scale. These expert ratings were useful: average Brier
scores were better if we used them as weights, with
the lowest levels of expertise getting no weight at all.
For the present demonstration we defined the expert
versus nonexpert groups by a median split for each
question.

Table 1 shows the optimal transformations () and
the average Brier scores (that we minimized) for the
four conditions, as well as the Brier scores with no
transformation. As expected, experts require less trans-
formation, presumably because they think that they
have more information and do not regress so much.
Likewise, the median requires less transformation than
the mean, because it does not require correction for
error. The fact that the median requires less trans-
formation, and is thus more extreme, supports the
assumption that the error distribution is asymmetric
in probability space. Comparison of the right-most
two columns shows the benefit of the transformation,
which is of course greater when a is greater.

® We emphasize that the results reported here are incomplete in
several ways even for the first year of a study that is in its third year
at the time of writing. The results reported here are intended as
illustrative, for the present discussion.

®To deal with missing forecasts on a given day, we used a decay
constant of 0.6. That is, the mean we report was a weighted mean, in
which each day’s forecast had its weight multiplied by 0.6 as the day
passed. (Hence, on the second passing day, the weight was 0.36.)
If the forecaster made a new forecast, all previous weights went to 0.
In other analyses of these data, we used other weights as well, but
the purpose of the present analysis is just to demonstrate the role of
the median in estimating parameters.

”We used the optimize() function in R to do this. We omitted one
additional question that seemed to be misleading (and in which the
mean probability was on the wrong side of 0.5).
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Table 1 Optimal Transformations (a) and Brier Scores (BS) for
Self-Reported Experts and Nonexperts from Year-1 Data
(Two Options Only)

Expertise Method a (error) BS, opt. BS,a=1
High Mean 2.43 (0.05) 0.148 0.187
High Median 1.78 (0.03) 0.160 0.176
Low Mean 3.08 (0.09) 0.139 0.196
Low Median 2.34 (0.06) 0.153 0.184

Note. BS is given for the optimized value of a (shown here) and for a =1
(no transformation). Error estimates are shown in parentheses. The error
is estimated by leaving out one of the 86 questions at a time and redoing
the optimization. The numbers reported are the standard deviations of these
values. We did not fit the model to each question because some questions
had very surprising resolutions, hence negative optimal values of a, whereas
others had unsurprising resolutions, leading to extremely high optimal values
of a. The idea was to find a value of a that would minimize the Brier score
given the existence of both kinds of cases, in some proportion.

It would appear from Table 1 that the difference
between mean and median is consistent across experts
and nonexperts. This would imply that, according
to our model, the noise is the same for experts and
nonexperts. However, Figure 3 tells a different story.
The curved lines here are derived from simulations like

Figure 3 Optimal Transformation Constant a as a Function of Noise and
Regression, for the Aggregated Mean for Experts and
Nonexperts

Optimal « for nonexperts

/%timal « for experts

Optimal transformation («)
w
1
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1 1
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Note. The optimal constants for the median correspond to those for zero
noise and are indicated with small circles. The horizontal lines are the optimal
transforms for means of experts (lower) and nonexperts (higher). The vertical
dashed lines are the inferred amounts of noise (lower for experts).
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the lines in Figure 2, but they are generated with the
reciprocal of the optimal transformations for the medi-
ans (1.78 for experts, 2.34 for nonexperts). The small
circles (for zero noise) represent the optimal transforma-
tions that result from the simulation for these medians.
The two horizontal lines are the optimal transforma-
tions for the means, as shown in Figure 2, the higher
line corresponding to nonexperts (3.08) and the lower
to experts (2.43). To estimate the noise for experts and
nonexperts, we can see where these horizontal lines
intersect the curved lines. The vertical dashed lines are
drawn through the intersections. It is apparent that
the noise for the nonexperts (2.98) is greater than that
for the experts (2.47). This is a reasonable conclusion.
The experts presumably were basing their judgments
on a larger proportion of the available evidence, so the
nonexperts might have differed more in what evidence
they had, and this would show up as noise in our
model.

7. Discussion

The main suggestion here is that we can decompose
the need for transformation of aggregated probability
judgments into two factors. One factor is variation
among forecasters, which may be seen as random error
producing probability judgments. Because this error is
asymmetric near the ends of the probability scale, it will
distort the mean forecast toward 0.5. A transformation
that extremizes the average of these judgments can
approximately undo the effect of this error on the
mean probability forecast. The approximation is very
close under reasonable assumptions. This factor is
not relevant for the median, because we assume that
errors are equally likely on both sides of the signal, the
optimal probability.

The other factor is the effect of forecasters knowing
that they lack information that is potentially avail-
able. They thus start with the judgment based on the
information they have and then regress it toward 0.5.
If a group of forecasters as a whole has some of the
missing Information (i.e., if different forecasters are
missing different information) then the group’s aggre-
gated forecast will be more likely to be correct (on the
correct side of 0.5) than the forecast of the average
forecaster. We compensate for this regression, again,
by extremizing the average forecast. We must do this
for the median too, because the regression affects both
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mean and median. We thus explain why the median,
as well as the mean, can sometimes benefit from an
extremizing transformation.

Although the amount of transformation does not
seem to be a simple function of the two factors, it
is possible to use graphical interpolation to infer the
amount of noise, as done in Figure 3.

Note that we can undo the effect of the first factor
(error) in other ways. In particular, we can transform
judgments before averaging them, e.g., by transforming
probability to log odds (as done by Satopdi et al. 2014).

We might also try to remove the second factor (regres-
sion) by asking different questions. First, it might be
useful to change our basic question into a semanti-
cally equivalent form (but one that is not necessarily
equivalent psychologically); i.e., instead of “What is
the probability for X?” we ask “Do you think X will
happen or not?” and “What is the probability that you
are correct?” Then we could ask an additional question,
“What is the probability that you would be correct if
you had all the available information?” Note that this
question does not assume that the answer to the first
question (whether X would happen) is the same.® Note
that such a question would very likely have more error,
because it requires an estimate of what information is
available.

In the results shown, a single transformation constant
was used for each condition. However, it is unlikely that
this is optimal. We have already noted that expertise
can affect the optimal transformation, and we did not
even break expertise down as far as we could. We also
expect that some problems have higher IU (irreducible
uncertainty) than others and thus should require less
transformation (because forecasters know that they
are not missing information that might be available).
Estimating the IU of a problem is difficult, in part
because the intrinsic uncertainty changes over time,
generally decreasing as a question comes closer to
being resolved.

Future research should seek more direct measures of
the two components we have postulated: error and

8 We could also ask something like, “What is the probability that the
group average would be on the correct side of 0.5?” This asks the
forecaster to consider not only how much information is missing but
also how much the group, together, has available in a way that can
affect the group average. Alternatively, we could ask for a direct
judgment of the proportion of the information potentially available
to others that is available to the forecaster.
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the benefit of aggregating that stems from differences
in information. Error might be measured by variance
among judges. The benefit of aggregation will be greater
when judges are less correlated with each other (e.g.,
over time). Another line of possible future research is
to find ways to test the crucial assumption that error is
equally likely on both sides of the signal; such a test
might involve an explicit and testable hypothesis about
why this assumption is false.
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Appendix A. The Best Probability Judgment

This appendix discusses what it might mean to say that a
probability judgment is optimal given a set of information.
It may help to clarify our assumptions and distinguish them
from other concepts in common use.

In standard accounts (e.g., Yates 1990), probability judg-
ments are often evaluated for correspondence (with reality,
as distinct from internal coherence) by two different criteria:
calibration and discrimination. Calibration is (roughly) a mea-
sure of whether probability judgments are in the correct
position in the 0-1 interval: judgments of 0.8 should corre-
spond to true propositions 80% of the time. Discrimination
is a measure of how well a judge discriminates true from
false propositions. Discrimination can be perfect even when
calibration is terrible (e.g., saying 0.02 for all true propositions
and 0.01 for all false ones), and vice versa (e.g., predicting
rain with probability 0.25, every day, in a place where it
rains on 25% of all days). Both of these criteria are obviously
relevant, but they represent two measures of goodness, and
we need one measure to define the best judgment.

Scoring rules, such as the Brier score, do provide such
a measure, but they are not defined contingently on a set
of available information. The way to get the best score (the
lowest score, for the Brier score) is to report a probability of 1
for true propositions and 0 for false ones. Yet the information
required to do this is typically unavailable.

The usual rationale for scoring rules is to provide incen-
tives against distorting well-calibrated judgments and in favor
of using all relevant and available information. Given this
rationale, it would make sense to define the best probability
judgment as the one that would get the best score. We cannot
know this for a single judgment, so let us generalize this
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statement slightly to say that the best judgment is the one
made using (mental and possibly computational) processes
that get the best expected score, compared to all other possible
processes. Note that this criterion is difficult to apply in
practice, but here we are trying to define a concept philo-
sophically. The point is to show that the concept has meaning.
With real data, we can approximate it.

The next problem is that there are many scoring methods,
and they need not give the same answer to this question
(although most of them will surely agree closely). Here we
provide an approach to finding a good score. We assume
that a probability judgment is an input to a decision made
by someone other than the judge. A good score should be a
function of the expected utility of the decision. Johnstone
et al. (2011) take this approach, but their interest is in cases in
which the utility function of the decision maker is known. We
assume that the judge does not know the decision maker’s
utilities. Similar approaches, reaching similar conclusions, are
those of Hernandez-Orallo et al. (2012) and Murphy (1966).

We illustrate this approach by making some assumptions
that we think are reasonable approximations in most cases.
These assumptions lead to the Brier score as optimal. This
is illustrative, and we do not explore the effects of other
assumptions, or whether other commonly used scores could
be justified by this approach at all.

Consider a choice of the sort that occurs frequently in
medicine (Pauker and Kassirer 1980). A doctor has two
options: treat or do not treat a particular condition. The propo-
sition of interest is that the condition is present. The doctor
asks a specialist for a probability judgment P about this
proposition. In making her decision, she considers two disu-
tilities (negative utilities): the disutility of treating when the
condition is absent, D, (f for false alarm) and that of not
treating when it is present, D,, (m for miss). Correct decisions
are assumed to have a disutility of 0. These two utilities allow
the doctor to define a probability threshold T, so that her rule
is to treat if P > T. It is easy to see that T = D;/(D,, + Dy).
(With probability T, the expected disutilities of treating and
not treating are equal.) Each decision has its own threshold.

Now let us make two simplifying assumptions for the
class of decisions at issue. The first is that their thresholds
are uniformly distributed in the 0-1 interval. This uniformity
assumption is surely an approximation, but it seems rea-
sonable to us. Moreover, it is consistent with some intuitive
assumptions. Specifically, imagine that some decisions are
“lopsided” in terms of differential disutilities and others
are not. The lopsidedness results from the fact that utilities of
outcomes are highly variable. Most are very small, but a few
are huge. A distribution with this property is the exponential,
which has a peak at zero. If we assume that D,, and D,
are exponentially distributed across all decisions, then the
ratio D;/(D,, + Dy) is uniform, as we show in Appendix B.
The idea that utilities are exponentially distributed might
be further justified by the assumption that utilities are the
result of the successive addition of small utility increments
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of the same size, each added with the same probability at
each step regardless of how many increments have been
added already, and the addition process stops when a step is
reached at which no increment is added. The exponential
distribution is “memoryless.” It is usually applied in this
way to waiting times, although it has also been applied
to incomes (Drédgulescu and Yakovenko 2001), which are
bounded at 0, like utilities.

The second simplifying assumption is that for each decision
D,, + Dy = 1. For present purposes, this is equivalent to
assuming that the total of both disutilities is independent
of the threshold T; if this is true, then we can rescale all
disutilities so that their sum is 1 without changing any
conclusions. This assumption seems reasonable because it
says, roughly, that the overall importance of a decision is
independent of T. This situation could arise if there is some
mechanism that brings decisions to our attention, and it has
some criterion of importance. It is reasonable to think that
this criterion would depend on the sum D,, + Dy.

These two assumptions imply that Dy =T and D,, =1—T.

Let us go one step further and ask about the expected
disutility as a function of P. To find the expected disutility
of say P, hold P constant and suppose (as assumed) that
T varies uniformly between 0 and 1. And let us assume
(without loss of generality) that the proposition at issue is
true, e.g., the patient has the condition that should be treated.
If T < P, there is no loss, because the correct option is chosen.
But, if T > P, the incorrect option will be chosen. We thus
need to consider values of T between P and 1.

The disutility of an error (D,,, the disutility of missing
a true case) at threshold T will be 1 —T. Thus, when T is
close to 1, the cost will be very small, but when T is close
to P, the cost will be close to 1 — P. To get the expected
disutility, we integrate over all the different values of T
between P and 1. In the general case, the expected disutility
would be proportional to |, Pl D,.f(T)dT, where f(T) is the
probability density function of T, which we have assumed is
uniform, so that this term is not needed. But, even without
the assumption of uniformity, D,, =1 —T, so this expression
becomes [, 1} (1-T)f(T)dT. We have, in essence, a right tri-
angle, with base and height of 1 — P. The total area of this
triangle, the expected loss, is (1 — P)?/2. This is proportional
to the Brier score for this case. The Brier score can thus serve
as an estimate of the expected utility loss that results from
giving the wrong probability: in this example, giving P when
it should be 1. In other words, the quadratic feature arises
because there are two effects: as P gets farther from 1, more
mistakes are made, and the cost of each additional mistake
increases linearly with the distance from 1 (by assumption).

Under these assumptions, we can think of the best prob-
ability judgment as the one made with the processes that
would minimize the Brier score for the class of judgments that
are of interest. Surely, the processes will depend somewhat
on the domain. For practical purposes, we can find a lower
bound on the best judgment by finding the best method
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for eliciting and aggregating probability judgments from
relevant experts in the domain of interest, so as to minimize
the Brier score. And, with good methods and good judges,
the lower bound should not be much lower than that for the
“signal” as we have described it. Any remaining uncertainty
is irreducible.

Appendix B. The Uniform Distribution

of Thresholds

Given two independent, identically-distributed exponential
distributions, X and Y, we will show that X/(X +Y) ~

Uniform(0, 1).
Given X ~ Ae™ and Y ~ Ae™", we note that X,
Y ~Gamma(l, 1/A).
Now we define
X
=X+Y d =—),
u + and v X1y

where u € (0, 00) and v € (0, 1), which means we have x = uv
and y =u —uv.
We calculate the determinant of the Jacobian to be —u,
and then determine the joint density of X and Y:
f(x, y) — Ae—Aer—Ay — )\28—/\(7(+y)’

and which, upon substituting in the above values for x and y,
gives us

f(u, "0) — A2€—A(uv+(u—uv))| _ u| — AZE—/\(X-%—y)(x +]/)

Now we integrate out u over its domain to find our desired

distribution:
X (%2
f(v_x+y>—/() AMue M du.

We can see that this is a complete Gamma(2, 1/A) kernel, so
f(v) =1, and is defined only on the interval (0, 1). Therefore

X
X1y = Beta(1, 1) = Uniform(0, 1).

If Beta(1, 1),

r()r(1)

flo)= T+ D)x@-D(1 — x)@-D =L

Appendix C. R Script for Simulation of

Optimal Transformations

# Signal probabilities Sig are the answers based on
the best data.

Sig <- (0:99)/200+0.5

# convert these to log odds. Use plogis() to unconvert.
logodds <- function(x) {log(x/(1—x))}
ptrans <- function(p,a) {p*a/(p*a+ (1—-p)*a)}
# transformation function
Lsig <- logodds(Sig)
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# create matrix, 100 forecasts at each value
Lsigmat0 <- matrix(rep(Lsig,100),100,100)

# computes values used for optimization, as a
function of Noise and Reg
Setup <- function(Noise,Reg) {
Lsigmat <- t(t(Lsigmat0) + Noise
xqnorm((0.5:99.5)/100)) # add noise
Lsigreg <- RegxLsigmat # regress, multipying by Reg
Respsreg <<- plogis(Lsigreg) # de-transformed
Medreg <<- apply(Respsreg,l,median)
# de-transformed aggregated median

}

# functions to minimize for optimization

f2 <- function(x)
{sum((Sig-ptrans(rowMeans(Respsreg),x))"2)}

f4 <- function(x) {sum((Sig-ptrans(Medreg,x))"2)}

# set up matrix for results of optimization for the
50 values

Tests <- matrix(NA,50,4)

colnames(tests) <- c(‘‘Noise,’’ ‘‘Regression,
‘ferror’’)

Tests[,1] <- rep(1:10,5)

Tests[,2] <- rep(c(1,0.8,0.6,0.4,0.2),

c(10,10,10,10,10))

a,

# fill the right two columns of the matrix
for (1 in 1:50) {
Setup(Tests[i,1], Tests[i,2])
Tests[i,3:4] <- unlist(optimize(f2,
interval =¢(0,20)))
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